Boundedly Rational Consumers

Marco VALENTE¹

¹LEM, S. Anna School of Advanced Studies, Pisa
University of L’Aquila
Background

Mainstream: consumers’ behaviour is represented by maximisation of a utility function whose parameters depend on un-observable personal preferences. Many criticisms can be raised against this perspective.
Mainstream: consumers’ behaviour is represented by maximisation of a utility function whose parameters depend on un-observable personal preferences. Many criticisms can be raised against this perspective.

- Evidence against rationality among consumers, and lack of “competitive” pressure necessary for the as if argument.
Background

Mainstream: consumers’ behaviour is represented by maximisation of a utility function whose parameters depend on un-observable personal preferences. Many criticisms can be raised against this perspective.

- Evidence against rationality among consumers, and lack of “competitive” pressure necessary for the as if argument.
- Firms’ successes and failures depends on demand, and their explanations must ultimately lie in consumers’ behaviour.
Mainstream: consumers’ behaviour is represented by maximisation of a utility function whose parameters depend on un-observable personal preferences. Many criticisms can be raised against this perspective.

- Evidence against rationality among consumers, and lack of “competitive” pressure necessary for the *as if* argument.
- Firms’ successes and failures depend on demand, and their explanations must ultimately lie in consumers’ behaviour.
- Empirical evidence shows that demand is heavily affected by market conditions, and firms actively engage in (trying to) shape their own demand.
Background

Mainstream: consumers’ behaviour is represented by maximisation of a utility function whose parameters depend on un-observable personal preferences. Many criticisms can be raised against this perspective.

- Evidence against rationality among consumers, and lack of “competitive” pressure necessary for the *as if* argument.
- Firms’ successes and failures depend on demand, and their explanations must ultimately lie in consumers’ behaviour.
- Empirical evidence shows that demand is heavily affected by market conditions, and firms actively engage in (trying to) shape their own demand.
- Theoretical requirements: explanation of changing market conditions are necessary to explain the evolution of markets, and depend on consumers’ behaviour.
Goal: understand how consumers behaviour affect markets’ configurations.
Outline

Goal: understand how consumers' behaviour affect markets’ configurations.

- Design of a model of consumers’ behaviour: simple, flexible and “realistic”.
Goal: understand how consumers behaviour affect markets’ configurations.

- Design of a model of consumers’ behaviour: simple, flexible and “realistic”.
- Test the model under different assumptions on supply and demand.
Assumption 1: Heterogeneous product/service

We define the products on the market as defined in terms of their evaluation in respect of m dimensions X_i, each representing one of many “qualities” relevant to buyers. Each product is then represented by a vector of values:

<table>
<thead>
<tr>
<th>Prod. A</th>
<th>Prod. B</th>
<th>...</th>
<th>Prod. N</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_A^1</td>
<td>v_B^1</td>
<td>...</td>
<td>v_N^1</td>
</tr>
<tr>
<td>v_A^2</td>
<td>v_B^2</td>
<td>...</td>
<td>v_N^2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>v_A^m</td>
<td>v_B^m</td>
<td>...</td>
<td>v_N^m</td>
</tr>
</tbody>
</table>

Table: Products’ quality values
Note that we consider the price as any other characteristic(s), since this is how consumers use the price (cost, proxy for quality, index of status, etc.).
Assumption 1: Heterogeneous product/service

Note that we consider the price as any other characteristic(s), since this is how consumers use the price (cost, proxy for quality, index of status, etc.).

We also assume that consumers are identical in terms of income, technical abilities, possibility of access, or any other other aspect not explicitly considered within the model.
Assumption 1: Heterogeneous product/service

We assume that consumers may make errors in observing the values of their product. These errors are unpredictable, and evenly distributed in the probability of over- or under-estimating a product.
Assumption 1: Heterogeneous product/service

We assume that consumers may make errors in observing the values of their product. These errors are unpredictable, and evenly distributed in the probability of over- or under-estimating a product. Instead of the true v^i_X's, consumers observe random draws from a normally distributed random function centered on the real value:

$$v^*_X = Norm(v^i_X, \Delta),$$

where Δ is the measure of the (inverse) experience of consumers in evaluating products.
Observed values’ distribution function
Tolerance to errors and approximations

As we will see the model is based on the direct comparison of two products (say \(i \) and \(j \)), in respect of one single characteristic, say \(x \): \(v_i^x \) and \(v_j^x \). We need to be able to assert whether \(i \) is superior, inferior or equivalent to \(j \) in respect of characteristic \(x \).
Tolerance to errors and approximations

As we will see the model is based on the direct comparison of two products (say i and j), in respect of one single characteristic, say x: v_i^{*x} and v_j^{*x}. We need to be able to assert whether i is superior, inferior or equivalent to j in respect of characteristic x.

Two products are defined as equivalent in respect of a characteristic if their difference is below a certain threshold:

\[
\begin{align*}
V_i^{*x} & \approx V_j^{*x} \iff \frac{|v_i^{*x} - v_j^{*x}|}{v_{Max}^{*x}} < \tau
\end{align*}
\]
Consumers are endowed with a vector of *minimal requirement* expressing, for each characteristic, the minimal level of quality considered as necessary for consideration, $\vec{z} = \{z_1, z_2, \ldots, z_m\}$.

Any product failing to pass the minimal requirement even on one single characteristic, i.e. $v_j^* < z_j$, is excluded from consideration before comparing it to the others.
Assumption 2: Bounded rational consumers

To represent consumers’ behaviour we adopt the algorithm Take-The-Best (TTB), as proposed by Gigerenzer and his group at MPI in Berlin.
Assumption 2: Bounded rational consumers

To represent consumers’ behaviour we adopt the algorithm Take-The-Best (TTB), as proposed by Gigerenzer and his group at MPI in Berlin.

- TTB is shown to replicate very closely both weaknesses and strengths of people actual decisions in everyday choices;
Assumption 2: Bounded rational consumers

To represent consumers’ behaviour we adopt the algorithm Take-The-Best (TTB), as proposed by Gigerenzer and his group at MPI in Berlin.

- TTB is shown to replicate very closely both weaknesses and strengths of people actual decisions in everyday choices;
- TTB came out at least as good in competing in artificial problems with far more sophisticated (and demanding) decisional algorithms.
Assumption 2: Bounded rational consumers

TTB reminds an operationalized version of lexicographic preferences:

1. Define: O the set of all **feasible** products on offer; I the set of all the characteristics i defining the products.
Assumption 2: Bounded rational consumers

TTB reminds an operationalized version of lexicographic preferences:

1. Define: O the set of all **feasible** products on offer; I the set of all the characteristics i defining the products.
2. Choose a characteristic $i \in I$.
Assumption 2: Bounded rational consumers

TTB reminds an operationalized version of lexicographic preferences:

1. Define: O the set of all feasible products on offer; I the set of all the characteristics i defining the products.
2. Choose a characteristic $i \in I$.
3. Remove from O all products scoring less than optimally in respect of i.
Assumption 2: Bounded rational consumers

TTB reminds an operationalized version of lexicographic preferences:

1. Define: O the set of all \textbf{feasible} products on offer; I the set of all the characteristics i defining the products.

2. Choose a characteristic $i \in I$.

3. Remove from O all products scoring less than optimally in respect of i.

4. If $|O| = 1$ choose the only product left.
Assumption 2: Bounded rational consumers

TTB reminds an operationalized version of lexicographic preferences:

1. Define: \(O \) the set of all feasible products on offer; \(I \) the set of all the characteristics \(i \) defining the products.

2. Choose a characteristic \(i \in I \).

3. Remove from \(O \) all products scoring less than optimally in respect of \(i \).

4. If \(|O| = 1 \) choose the only product left.

5. Otherwise, set \(I = I - i \).
Assumption 2: Bounded rational consumers

TTB reminds an operationalized version of lexicographic preferences:

1. Define: O the set of all feasible products on offer; I the set of all the characteristics i defining the products.
2. Choose a characteristic $i \in I$.
3. Remove from O all products scoring less than optimally in respect of i.
4. If $|O| = 1$ choose the only product left.
5. Otherwise, set $I = I - i$.
6. If $I = 0$ choose randomly a product in O.
TTB reminds an operationalized version of lexicographic preferences:

1. Define: \(O \) the set of all \textbf{feasible} products on offer; \(I \) the set of all the characteristics \(i \) defining the products.
2. Choose a characteristic \(i \in I \).
3. Remove from \(O \) all products scoring less than optimally in respect of \(i \).
4. If \(|O| = 1 \) choose the only product left.
5. Otherwise, set \(I = I - i \).
6. If \(I = 0 \) choose randomly a product in \(O \).
7. Return to 2
Assumption 2: Bounded rational consumers

As an example, consider a product category defined over three dimensions: price, robustness and design. A consumer may choose firstly to ignore all products appearing as not robust. Among these he may choose the cheapest and, among the few remaining ones, eventually select the best looking one.
Assumption 2: Bounded rational consumers

As an example, consider a product category defined over three dimensions: price, robustness and design. A consumer may choose firstly to ignore all products appearing as not robust. Among these he may choose the cheapest and, among the few remaining ones, eventually select the best looking one.

Though extremely simple, the TTB is very flexible and easily extendible. Moreover, it applies to any kind of variable, requiring only the capacity to identify a product as equivalent to the best on a certain dimension, or as dominated.
Assumption 3: defining preferences

Obviously, the results of the application of the TTB to the same set of products would differ depending on the order in which the selecting dimensions are used. This is an opportunity for a much needed definition: what exactly are preferences?
Assumption 3: defining preferences

Obviously, the results of the application of the TTB to the same set of products would differ depending on the order in which the selecting dimensions are used. This is an opportunity for a much needed definition: what exactly are preferences?

It is common to refer to “preferences” as the explanation of a given consumer’s choice. However, preferences are not the very choice, but the criteria guiding the decisional procedure, which eventually produced the choice. For example, you may have two consumers with different preferences (criteria) choosing the same product, but for different reasons.
Assumption 3: defining preferences

We can therefore define preferences in a precise way:

Preferences are the relative order of the product characteristics, for descending importance, as used in decisional processes.

Market research companies routinely collect and exploit this information.
Assumption 4: origins of preferences

Given this definition of preferences we can identify one of the sources influencing them (besides exogenous factors). Firms across countries, time and sectors spend huge resources in marketing, signifying that they (hope to) influence consumers’ choices. How does marketing works?
Assumption 4: origins of preferences

Given this definition of preferences we can identify one of the sources influencing them (besides exogenous factors). Firms across countries, time and sectors spend huge resources in marketing, signifying that they (hope to) influence consumers’ choices. How does marketing works?

Besides obvious effects (e.g. let consumers know that product X exist), we can assume that firms point to modify the criteria used by consumers in order to favour their own product against competitors.
Assumption 4: origins of preferences

We assume that firms attempt to modify the relative order of importance of the product characteristic. In the model we can then define the desired preferences’ profile by each firm, in terms of weights for each characteristic:

<table>
<thead>
<tr>
<th></th>
<th>X_1</th>
<th>X_2</th>
<th>...</th>
<th>X_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod. A</td>
<td>k_A^1</td>
<td>k_A^2</td>
<td>...</td>
<td>k_A^m</td>
</tr>
<tr>
<td>Prod. B</td>
<td>k_B^1</td>
<td>k_B^2</td>
<td>...</td>
<td>k_B^m</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Prod. N</td>
<td>k_N^1</td>
<td>k_N^2</td>
<td>...</td>
<td>k_N^m</td>
</tr>
</tbody>
</table>

where k_X^i is the importance of characteristic i that firm X would like consumers to have.
Assumption 4: origins of preferences

We can expect that firms transmit contrasting messages, with a firm, for example, indicating that characteristic i is not relevant at all, while a competitor claims it must be the most important. How consumers form their own preferences?
Assumption 4: origins of preferences

We can expect that firms transmit contrasting messages, with a firm, for example, indicating that characteristic i is not relevant at all, while a competitor claims it must be the most important. How consumers form their own preferences?

Besides cultural, income, and other factors, we can exploit the strong evidence that consumers’ tend to follow a “herd” behaviour, replicating what they see from their peers. However, consumers cannot observe directly preferences, but the resulting choices.
Assumption 4: origins of preferences

In the model we represent the origin of preferences assuming that each consumer, when entering the market, decides his/her preferences by weighting the messages from firms with the observed market shares on the market.
Assumption 4: origins of preferences

In the model we represent the origin of preferences assuming that each consumer, when entering the market, decides his/her preferences by weighting the messages from firms with the observed market shares on the market. Technically, the model builds for the consumer the following indicator:

\[p_i = \sum_{j=1}^{n} (k_j^i s_j)^{\delta} \]

where \(s_j \) represent the market shares of supplier \(j \), \(k_j^i \) is the marketing level of firm \(j \) in respect of characteristic \(i \), \(n \) is the number of firms, and \(\delta \) is a coefficient flattening or steepening the indicators.
Assumption 4: origin of preferences

The indicators (normalized) are then used as probabilities to extract the first (the most relevant) characteristic, topping the consumer’s preferences, and then all others are drawn in the same way.
Assumption 4: origin of preferences

The indicators (normalized) are then used as probabilities to extract the first (the most relevant) characteristic, topping the consumer’s preferences, and then all others are drawn in the same way.

As a result, a characteristic strongly supported by the best-selling firm is likely to come out at the top of consumers’ preferences, while characteristics considered not relevant will fall in the end of the consumers’ decisional process.
Summary of assumptions

The model allows for:

1. Heterogeneous products/services, defined over multiple and diverse characteristics.
Summary of assumptions

The model allows for:

1. Heterogeneous products/services, defined over multiple and diverse characteristics.
2. Consumers’ errors and approximations.
Summary of assumptions

The model allows for:

1. Heterogeneous products/services, defined over multiple and diverse characteristics.
2. Consumers’ errors and approximations.
Summary of assumptions

The model allows for:

1. Heterogeneous products/services, defined over multiple and diverse characteristics.
2. Consumers’ errors and approximations.
4. Definition and some source of preferences.
The amount of sales for the whole market and for individual firms depend on many aspects, not only price as in standard economics demand theory.
Demand surfaces

The amount of sales for the whole market and for individual firms depend on many aspects, not only price as in standard economics demand theory.

The concept of *hedonic prices* is a theoretical concept used to use translate quality differences into price differences. However, the hedonic prices are widely recognised as empirically unusable due to the inconstency of consumers data.
The amount of sales for the whole market and for individual firms depend on many aspects, not only price as in standard economics demand theory.

The concept of *hedonic prices* is a theoretical concept used to use translate quality differences into price differences. However, the hedonic prices are widely recognised as empirically unusable due to the inconstency of consumers data.

On the contrary, the proposed TTB-based demand is able to use qualitative data, with the only requirements that consumers are able to compare products on individual characteristics.
A demand function needs to respect three basic properties, not normally guaranteed by traditional demand functions:

- Other things being equal, improving one product increases its sales.
- Other things being equal, improving one product decreases the sales of competitors.
- Other things being equal, improving one product increases overall market sales.
Demand surfaces

The proposed model is able to generate aggregate demand respecting these basic tenets of standard economics. For example, consider a market made of two products defined over two characteristics. The following figure shows sales for the whole market and for a firm for different levels of the represented firm’s qualities.
Overall market dynamics
Static demand functions are purely theoretical concepts, since it is impossible to test every possible combination of features in real markets. In reality we can observe choices of people through time, reacting to the conditions of supply (i.e. of producers).

In the following we use the demand model assuming a set of consumers entering the market according to a s-shaped dynamics as for a new market. The dynamics is represented with a contagion diffusion dynamics where each consumer introduces a decreasing number of new consumers’ to the market.
Overall market dynamics
Consumers’ learning

We assume that consumers’ *learn* through time, making large mistakes at the beginning and then being increasingly able to assess the true products’ qualities. This is represented by decreasing the parameter Δ determining the width of the error in observing characteristics values.
Consumers’ learning

We assume that consumers’ learn through time, making large mistakes at the beginning and then being increasingly able to assess the true products’ qualities. This is represented by decreasing the parameter Δ determining the width of the error in observing characteristics values.

In effect we turn the parameter into a variable Δ_{age} for each consumer where we set the initial level Δ_0 representing the newbies’ error and the final limit Δ_∞ as the error constantly made by even expert consumers.
Single consumers’ learning
Exercises

We can now observe and interpret the results produced by different configurations of the model. We will show the number of consumers adopting one among ten products. In the different exercises we will modify the following aspects:

- Products’ values and marketing strategies v_i^X’s and k_i^X’s;
We can now observe and interpret the results produced by different configurations of the model. We will show the number of consumers adopting one among ten products. In the different exercises we will modify the following aspects:

- Products’ values and marketing strategies v_i^X’s and k_i^X’s;
- Learning limits Δ_∞
Exercises

We can now observe and interpret the results produced by different configurations of the model. We will show the number of consumers adopting one among ten products. In the different exercises we will modify the following aspects:

- Products’ values and marketing strategies v_i^x’s and k_i^x’s;
- Learning limits Δ_∞
- Tolerance levels τ
Exercises

We can now observe and interpret the results produced by different configurations of the model. We will show the number of consumers adopting one among ten products. In the different exercises we will modify the following aspects:

- Products’ values and marketing strategies v_i^X’s and k_i^X’s;
- Learning limits Δ_∞
- Tolerance levels τ
- Relevance of peer’s pressure in preferences formation δ
Simple monopoly

As initial test let’s consider the supply side composed by all identical products, except one which is superior to competitors in all respects.
Simple monopoly

As initial test let’s consider the supply side composed by all identical products, except one which is superior to competitors in all respects.

We assume that consumers’ have no tolerance $\tau = 0$ and can, with age, perfectly read the true products’ values $\Delta_\infty = 0$.
Monopoly
Suppose that consumers maintain the possibility to make (small) errors in evaluating products even when they are expert, $\Delta_{\infty} > 0$. In this case the dominating product keeps the market leadership, but small shares of consumers keep on erroneously choosing dominated products.
Monopoly with errors
Monopoly with tolerance

In this last case on monopoly we introduce the “tolerance”. In respect of the previous exercises we assume that consumer consider as inferior only products whose values is less than \(\tau% > 0 \) that of the maximum.

We set the values so that the “best” product has an advantage which is smaller than the tolerance. Therefore, when consumers are able to perfectly observe the values (\(\Delta = 0 \)) are indifferent in choosing any product.

However, consumers have an intermediate period in which their capacity to read products’ values is limited (\(\Delta_t > 0 \)).
Monopoly with tolerance

![Graph showing simulation results for monopoly with tolerance, with axes labeled for 1 to 400 and values ranging from 0 to 533. The graph includes multiple lines representing different scenarios.]
Monopoly with tolerance

The reason lies in the probability distribution of the errors of consumers. When the consumers reach the stage where $\Delta_{age} = 0$ they obviously realise that the advantage of the dominant firm is negligible. However, before that stage, the possibility of errors actually favours the dominant firm, since consumers have a large chance to mis-interpret the gap as larger than the actual one.
Monopoly with tolerance
Monopoly with tolerance
Monopoly with tolerance
Segmentation and concentration

Let’s consider now a set of suppliers as “specialized” producers. Each of the 10 competitor enjoys an advantage in respect of one of 10 characteristics of the products, and pursue, accordingly, a marketing strategy promoting that characteristic. Consumers have no tolerance ($\tau = 0$) and perfectly learn to evaluate products ($\Delta_\infty = 0$). We compare the effect of a higher and lower δ, governing the concentration or diffusion of the probabilities when forming the preferences.
Segmentation and concentration

Low δ

High δ
“Perfect” oligopoly

Let’s now consider a large number of firms, initialized with random values of qualities and market strategies. We make a first test assuming consumers with no tolerance and perfect learning ($\tau = 0$ and $\Delta_\infty = 0$).
"Perfect" oligopoly
“Noisy” oligopoly

In the same setting we now prevent consumers to reach perfect evaluation, setting $\Delta_\infty > 0$ until period 400, and then we abruptly set $\Delta_\infty = 0$.
“Noisy” oligopoly
In this last exercise we set perfect learning, $\Delta_\infty = 0$, but introduce a small tolerance, $\tau > 0$, meaning that consumers consider equivalent products on characteristics differing by small values.
“Chaotic” oligopoly
The two complex market configurations are similar in terms of distributional terms: concentration, stability, etc. However, the ranking of firms is very different: firms succeeding in one market have only mediocre performance in the other.

This difference shows that demand matters, and evaluating only on the basis of supply-side features fails to catch crucial aspects. The following graph reports the sales of firms in the two markets.
Comparison
We presented a model for consumers providing a clear distinction between decision making procedure, preferences and actual choices produced.
Conclusions

We presented a model for consumers providing a clear distinction between decision making procedure, preferences and actual choices produced.

The model is able to generate a wide variety of market configurations allowing to define a classification of market segmentation.
We presented a model for consumers providing a clear distinction between decision making procedure, preferences and actual choices produced.

The model is able to generate a wide variety of market configurations allowing to define a classification of market segmentation.

Each configuration is rooted in motivations concerning features of the demand side that are potentially observable.
In particular, we identified the following types of market segmentation:

1. Error-based segmentation. Consumers willing to choose the best in respect of one characteristic actually distribute across a range of firms. However, all users of a given product have the same objective.
In particular, we identified the following types of market segmentation:

1. Error-based segmentation. Consumers willing to choose the best in respect of one characteristic actually distribute across a range of firms. However, all users of a given product have the same objective.

2. Complex segmentation. Consumers aim at several, ordered, goals, generating complex market structures. Users of the same products have different reasons for their choices.
The research may be extended in several directions:

- Merge the model with other modules (e.g. innovation, production, trade, etc.).
The research may be extended in several directions:

- Merge the model with other modules (e.g. innovation, production, trade, etc.).
- Calibrate the model on a given set of consumers.
The research may be extended in several directions:

- Merge the model with other modules (e.g. innovation, production, trade, etc.).
- Calibrate the model on a given set of consumers.
- Identify classes of consumers with similar behavioral conditions.
Reading
